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OF DIFFUSE SPHERICAL ENCLOSURES

By E. M. Sparrow and V. K. Jonsson

SUMMARY

An analysis was made to determine the energy absorbed when radia-

tion from an external source enters a spherical cavity with diffusely

reflecting walls. It was found that both the overall energy absorbed in

the cavity and the local distribution of absorbed energy could be ex-

pressed in terms of simple algebraic equations that are valid for any

arbitrary spatial and directional distribution of the incoming radiation.

In addition, the characteristics of an isothermal spherical cavity as a

possible source of near black-body radiation were investigated. This

information was also expressed by simple algebraic relations.

INTRODUCTION

The thermal radiation characteristics of spherical cavities are of

practical importance in connection with _he absorption of radiant energy

for both outer-space and terrestrial applications. For example, a study

of the relative merits of various absorber configurations for a space-

vehicle solar power system has shown the spherical cavity to be quite

attractive (ref. i). In addition, spherical cavities are of potential

use as emitters of black-body radiation.

An analysis, described herein, was made to determine both the ab-

sorption and emission characteristics of spherical cavities, the surfaces

of which are diffuse reflectors and emitters (i.e., lembert's cosine law

is obeyed). The absorption analysis sought to provide the following in-

formation: Given the amount of radiant energy entering the cavit_ what

fraction is ultimately absorbed within the cavity. It is shown that

this overall absorption result can be derived without approximation in

terms of a simple closed-form expression that is valid for any arbitrary

spatial and directional distribution of the incoming radiation. A sec-

ond aim of the absorption analysis was to provide the local distribution

of absorbed energy as a function of surface location within the cavity.
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This local absorption information is also derived in terms of a simple
closed-form algebraic equation valid for any arbitrary distribution of
incoming radiation. These general properties of the spherical cavity
appear not to have been reported by previous investigators.

The absorption problem is treated herein without recourse to the
emission problem. What was being sought was an effective (or apparent)
absorptivity that characterizes the combinedbehavior of the cavity
geometry and its surface absorptivity. This effective absorptivity for
the cavity may be considered a property in the samesense as is the
surface absorptivity a property of a plane surface. The reemission of
radiant energy depends upon the particular thermal boundary condition
that is prescribed at the surface of the cavity (e.g., isothermal,
adiabatic, or uniform heat flux). The results derived herein for the
local distribution of absorbed energy can be used as input data for
solving the reemission problem for any arbitrarily prescribed thermal
boundary condition. Thus, the results of this report are meant to have
general applicability extending beyond particular thermal boundary con-
ditions. The present analysis utilizes a temperature-independent sur-
face absorptivity that is defined as the fraction of the incoming energy
absorbed over the entire range of wavelengths. The gray-body assumption
need not be made. The results can equally well be used on a monochro-
matic basis and then integrated over all wavelengths.

The second part of this report is concerned with the emission char-
acteristics of isothermal spherical cavities. This study is motivated
by the possible utilization of such cavities as sources of black-body
energy. In such applications, care would be taken to ensure that the
energy level of any external radiation entering the cavity would be much
lower than the energy level of radiation emitted within the cavity. With
this in mind, external radiation is not included in the cavity-emission
analy si s.

This research was sponsored by the National Aeronautics and Space
Administration through the Office of Grants and Research Contracts.
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surface area of cavity interior

radiosity: radiant flux leaving

and area

surface element per unit time
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ANGLEFAC-_RFORDIFFUSEINTERCHANGE

As a basis for the analysis that follows, the angle factor for
diffuse interchange within a spherical cavity must be known. The angle
factor is the fraction of the radiant energy leaving one surface element
that is incident on someother surface element. The _erivation of the
angle factor for two elements located on a spherical shell is based on
sketch (a). For radiant interchange between two diffuse infinitesimal

_\ y2L_d\\ A_

 'dA,

(a)

surface elements, the angle factor takes the following form (e.g., ref. 2):

cos Irl cos YI dA 2 (i)
dFl_ 2 = _d 2

Written in this wa X the angle factor represents the fraction of the

radiant energy leaving dA I that reaches dA 2. The distance as meas-

ured along the connecting line between dA i and dA 2 is denoted by d.

The angles TI and T2 are, respectively, formed by the normals to

dA I and dA 2 and the connecting line between the elements. From

sketch (a) it is easily seen that

cos Yi = cos T2 = (d/2)
R
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With this, equation (i) becomes

dA 2
= (2a)

dFl-2 &_R 2

The remarkable aspect of this result is that the angle factor is In-

dependent of the orientation and the position of the elements. This is

a unique property of the spherical cavity. With cognizance of this

property taken, equation (2a) can be generalized to read

A2
F1-2 =: (2b)

where the surface elements i and 2 may be either finite or infinitesimal.

The findings of the previous paragraph easily show that radiation

which is diffusely emitted or reflected from a surface element will

reach every unit area of the spherical cavity in uniform amount. Thus,

if A* is the surface area of the cavity interior, the fraction

A*/4_R 2 of the energy leaving an element will fall upon the surfaces

of the cavity and another fraction 1 - (A*/4xR 2) will escape through

the opening.

ABSORPTION CHARACTERISTICS

Overall Energy Absorption

Consider radiation from an external source streaming into a spher-

ical enclosure, which is diagrammed in sketch (b). The radius of the

Z

(b)



6

sphere is R, and the angle _ defines the opening of the cavity. The

angles _ and e are, respectivel_ the polar and plane angles in a

standard set of spherical coordinates. The corresponding surface area

A* of the cavity interior is

A* = 2=R2(l + cos q)*) (3)

The spatial and directional distribution of the incoming radiation may

be completely arbitrary, and the rate of incoming energy is denoted by

s (e.g.,_u/_).

Consideration of the incoming energy shows that upon first contact

with the surface an amount

Qz = _s (_)

is absorbed, and (i - _)S is reflected in all directions. Of this re-

flected energ_ it follows, from the foregoing discussion of angle fac-
A*

tors, that an amount (1 - _)S remains within the cavity and is
4_R 2

uniformly distributed over the surface. Of the reflected energy thus

incident on the surface, a fraction _ is absorbed, that is,

Q2 = _SI(l - _) 4-_R21 (4b)

and another fraction (i - _) A*
is re-reflected and then returns to

the surface. Once again, a fraction _ is absorbed, that is,

f A* ]2
A*

and another fraction (1 - _) reflects and returns to the surface.
4mR 2

If account were kept of all the successive absorptions Qi, the total

energy absorbed Q could be determined by simply summing the separate

contributions as given by equations (4a), (4b), (4c), and so forth:

{ .}Q = Qi --_8 i+ (1 - _) A* + I - s) + . .

i=l 4_R2 4_R2]
(s)

The series within the braces is a geometric progression and therefore

can be summed in closed form. Making use of this sum and introducing

A* from equation (5) gives

aS

Q = z - o.s(z- _)(z + cos _*)
(6)

Ob
['O
['O
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As a convenient representation of the overall absorption results_

there is introduced the apparent absorptivity, which is defined as

Total energy absorbed =
_a = Total incoming energy S

(v)

Substituting for Q from equation (6) yields the expression for _a as

: l - O.S(1- + cos qo*)

The remarkable conclusion_ which follows from this_ is that the apparent

absorptivity is independent of the detailed manner in which the incoming

energy enters the enclosure_ thereforej equation (8) applies in general.

The only parameters are the opening angle _* and the surface absorp-

tivity _.

The apparent absorptivity, as given by equation (8), is plotted in

figure 1 as a function of @* for parametric values of _. Inspection

of the figure reveals that the apparent absorptivity of the cavity al-

ways exceeds the surface absorptivity _. This finding is related to

the additional opportunities for absorption that accompany the multi-

reflections within the cavity (the so-called "cavity effect"). The in-

crease of _a relative to _ is greatest for surfaces of low absorp-

tivity and for cavities with small openings (i.e., small _*). Even for

a moderately large opening angle such as 60°, however, there is already

a substantial deviation between c_a and _. For very small vahes of

_*, the apparent absorptivity is very close to unity regardless of the

actual surface absorptivity.

Local Energy Absorption

Thus far consideration has been given to the absorption character-

istics of the enclosure as a whole. Now_ attention will be directed to

the energy absorbed locally at various positions on the cavity wall.

The distribution of the incoming energy over the interior of the cavity

is represented by s(%e) per unit surface area (e.g._ Btu/(hr)(sq ft).

The relation between the local distribution s and the total rate of

incoming energy S is given by

S =_ -0 _ -0 s(_'8)R2sin _ d0 d_

(9)

The radiant energy locally absorbed per unit time and area is denoted

by q.
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From the first contact of the incoming radiation with the surface,
the energy locally absorbed per unit time and area is

qi--_s (lOa)

All subsequent absorptions of reflected and re-reflected radiation, how-

ever, take place uniformly at all locations in the enclosure. From all

absorptions following the first contact, therefore, the energy locally

absorbed per unit area is most simply obtained by subtracting aS from

Q (eq. (6)) and then dividing by the surface area A*. From this it

follows that

=(i -_)(s/_R2)
q-qi =i_o.s(l__)(l+cos_o _)

(lOb)

Then, q is obtained by combining equations (10a) and (10b):

q = as + _(i- _)(s/_R2)
i - o.5(i- _)(i+ cos_*)

(ii)

Equation (ii) applies for any arbitrary surface distribution of incoming

radiation. The final explicit result for q is obtained by introducing

the particular distribution function s(_,@) that may be of interest.

Contrasting the simplicity of the local absorption result that has

Just been derived with what would be found for nonspherical configura-

tions is interesting. In genera_ for other cavity shapes, solving an

integral equation to determine q would be necessary and, almost always,

numerical means would be required. In many situations, such solutions

would have to be carried out separately for each distribution function

s of interest. When cognizance of this is taken, the simplicity and

generality of equation (ll) is clearly evident.

Applications of General Analysis

To illustrate the use of the foregoing analysis, application will

be made to two important limiting cases. The first is concerned with

incoming radiation traveling in a bundle of parallel rays, while the

second treats incoming radiation that is diffusely distributed over the

opening of the cavity.

Parallel rays. - Consider radiation arriving in a parallel-ray

bundle as illustrated in figure 2. The rays travel in the direction of

the positive x-axis and make an angle _ with the vertical. The energy

carried by the ray bundle may be characterized by er per unit area



normal to the ray (e.g., Btu/(hr) (sq ft)). An obvious examplewould be
the solar constant. Becausethe area of a surface tightly stretched
across the opening of the spherical cavity is _(R sin _*)2 and the
projection of the rays along the normal to this surface is accomplished
by cos 6, the total energy S entering the enclosure is

S = erxR2cos _ sin2_* (12)

The overall rate of energy absorption in the cavity is c_S, where _a

may be calculated from equation (8) or read from figure I.

Next, the surface distribution of the incoming energy s(_,e) may

be determined. Depending on the inclination angle _ and the opening

angle 9*, the incoming rays may be directly incident on only part of

the surface; the remaining portion receives radiant energy because of

internal reflections alone. The portion that is directly irradiated may

be called the no-shadow region, while the portion receiving only re-

flected energy may be called the shadow region. In the no-shadow region,

the distribution function s (which is per unit surface area) may be

derived by projecting the incoming rays along the surface normal.

Writing expressions for unit vectors lying along the local surface normal
(i.e., the radius vector) and along the incoming rays and then taking the

scalar product shows that

s = er(COS e sin _ sin _ - cos _ cos _) (_3a)

in the no-shadow region. In the shadow region,

s - 0 (13b)

These expressions for s, along with equation (12) for S, may be uti-

lized in determining the local distribution of the absorbed energy as

given by equation (Ii).

In order to render equations (13) fully useful, the boundary be-

tween the shadow and no-shadow regions must be determined. To illustrate

the method of analysis, consider the case where _* > 90 °, that is, a

spherical shell smaller than a hemisphere as pictured in figure 2. When

the inclination angle _ < (9" - 90°), the incoming radiation will fall

directly on all parts of the surface (albeit nonuniformly). When

_ (_* - 90o), a shadow region coexits along with a region of direct

illumination. The coordinates of the boundary curve between the shadow

and no-shadow regions will be found with the aid of figure 2. The upper

part of the figure is a plan view of the spherical shell showing radia-

tion arriving from the right. The lower part of the figure is an eleva-

tion view cut through the spherical shell at a typical location y =

constant. In the lower part of figure 2, there is shown a limiting ray
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that grazes the rim of the shell and strikes the surface at a location
x, z; this is the boundary point between the shadowand no-shadow regions.
From the geometry of the figure

x = -r cos(2_ - _), z = -r sin(2_ - _) (l_a)

Also, it is easy to show that

r sin _ = -R cos _*, cos V 2sin2£-y2 (l b)

The distance r and angle _ can be eliminated by combining equations

(14a) and (lCb), and this yields

x = R cos q0*sin 28 - _2sin2q0 * - y2 cos 2_

Jz = -_R2sin2qD * - y2 sin 2_ - R cos qD*cos 2_

(i5)

Equations (15) constitute a parametric representation of the boundary

curve between the shadow and no-shadow regions.

When q0* < 90 ° (spherical shell larger than a hemisphere), the

boundary curve is also defined by limiting rays that graze the rim of

the cavity opening and intersect the shell. As illustrated on figure 5,

however, rays that graze at all points around the rim must be considered.

From the rays that graze at the forward edge of the rim (toward the in-

coming rays), the x,z-coordinates of the shadow, no-shadow boundary re-

main as given by equations (15). From the rays that graze at the rear-

ward edge of the rim, the boundary curve is found to be

x = R cos q0*sin 2_ + _R2sin2_ * - y2 cos 2_h

Jz = _R2sin2q0 * - y2 sin 2_ - R cos _*cos 2_

(i6)

To provide some feeling for the nature of the boundary curve, it is

useful to project it into the x,z- and x,y-planes. The projections

have the following equations:

x sin 2_ - z cos 2_ = R cos _*

y2_x - R cos _*sin 2_) 2 + = 1

R2sin2_*cos22_ R2sin2_ *

(17)

These projections are, respectively, a straight line and an ellipse.

This indicates that the boundary curve cuts out a circle or a part of a

circle on the surface of the spherical shell.

!

DO
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To illustrate these results, figure 4 has been prepared to show

the projections of the boundary curve in plan and elevation views (x,y-

and x_ z-planes_ respectively). The left side of the figure corresponds

to an enclosure where 9" > 90°. Projections are shown for inclination

angles _ < 45°_ = 45°_ and > 45 ° . The right side corresponds to

_* < 90°_ and projections are shown for _ < 45° and _ = 45° . The

case of _ > 45° was not included in order to preserve clarity of the

figure.

Diffuse incomin_ radiation. - Diffuse radiant energy is considered

uniformly distributed over the opening of the spherical cavity. The

energy carried by the diffuse stream may be characterized by ed per

unit area of the cavity opening. For purposes of analysis and without

loss of generality_ this energy may be regarded as coming from a blackj

isothermal spherical cap of spherical radius R and emissive power ed3

which fits over the opening of the cavity. This arrangement is pictori-

ally illustrated in sketch (c). Such a spherical cap gives rise to a

Black isothermal radiating
surface

(c)

diffuse stream of radlatlon, uniformly distributed across the cavity

opening. Since a black surface is a diffuse emitter3 radiant energy

coming from the spherical cap is uniformly distributed along the walls

of the cavity (see discussion following eq. (2b)). This same statement

also applies to any stream of incoming diffuse energy uniformly dis-

tributed across the cavity opening.
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The opening of the spherical cavity has an area _(R sin q0*)2 and,
therefore, the rate S at which radiant energy enters the cavity is

S = edXR2sin2_* (18)

A fraction _a of this energy quantity is absorbed within the cavity.

Since the incoming radiation is uniformly distributed over the walls of

the cavity (area A*), the distribution function s is independent of

position and is equal to

S 0.Se d sin2_ *

s = _ = 1 + cos _p* (19)

Introducing these expressions into equation (ii) gives the following re-

sult for the local rate of energy absorption q:

q = ed
0.5 c_ sin2q0*/(! + cos q0*)

i - o. (i- + cos
(20)

Inspection of equation (20) reveals that q is uniform along the walls

of the cavity. This result may be contrasted with the findings for the

case of the parallel ray bundle, for which q is a function of position

for any inclination angle of the rays.

!

O%

_ISSION CHARACTERISTICS

Consideration is now given to the emission characteristics of a

diffuse, isothermal, spherical cavity (temperature T). Radiation en-

tering the cavity from an external source is not included in the analysis

for reasons already discussed in the INTRODUCTION. The surface absorp-

tivity and emissivity relate, respectively_ to energy absorption and

emission over the entire wavelength range. The gray-body assumption is

not required, so that _ need not be equal to e. The analysis as

given in the following paragraphs can also be carried out on a mono-

chromatic basis.

The starting point of the analysis is a radiant flux balance on a

typical element of surface. The energy leaving the surface element per

unit time and area is equal to the sum of the emitted energy plus the

reflected portion of the incident energy. The leaving energy per time

and area is denoted by B and is called the radiosity; while, the in-

cident energy per unit time and area is denoted by H. With these, the

radiant flux balance becomes

B(%,eo)= 4 + (1- (21)
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where _o, eo are the coordinates of a particular surface location and

the reflectivity has been replaced by (i - _). In reference 5, it is

shown that the radiant flux incident at any given point is obtained by

taking the radiant energy leaving another location, multiplying by an

appropriate angle factor, and then integrating over the entire surface:

_(_o,eo) = g B(%e)_ (22)

Since both the temperature and the angle factor are uniform throughout

the cavity, it is easily seen that the radiosity B will also be in-

dependent of position; therefore,

4_R 2

Introducing equation (25) into (21) and solving for B gives

o_ 1 - o.s(1 - _)(1 + cos _*)

in which A* has been evaluated from equation (5).

If the cavity is to be used as a black-body energy source, B/oT A

is a measure of its effectiveness. Clearl_ it would be desired that

B/aT 4 approach as closely as possible to unity. If _ _ e (gray body),

B/oT A can be read directly from figure i. The figure reveals that a

spherical enclosure with a small hole (small _*) is a very effective

black body. If _ _ c, figure i may still be used, but the values read

from the ordinate must be multiplied by e/_.

The net local heat flux q' per unit area is the difference be-

tween the radiant flux leaving the surface element and the flux that is

incident on it:

ql = B - H

Substituting equations (25) and (24) for

rearranging yields

(zs)

H and B, respectively, and

q_ = eat &
o.ssin2qo*/(1+ cos_*)

1 - o.5(1 - o0(1 + cos _*)
(26)



Inspection of this equation reveals that q' is uniform over the sur-

face. It is also interesting to note that q_ represents the rate at

which energy must be locally supplied to the w_ll of the spherical shell

in order to maintain the isothermal condition.

The overall rate Q' at which radiant energy streams outward from

the opening of the cavity may be calculated by multiplying equation (26)

by A*. A convenient representation of this overall heat-transfer re-

sult may be made in terms of an apparent emissivity Ca, defined as

follows:

Ca = Q'/%b (27)

where Qbb is the radiant energy streaming from a black-walled iso-

thermal cavity. The energy loss from a black cavity is precisely equal

to the radiation from a black isothermal disk stretched over the cavity

opening

Then, multiplying equation (26) by A* and dividing by Qbb' gives

E a =
(29)

1 - o.5(z -=)(z + cos

Comparison of this result with equation (8) reveals that Ca = _a for

a gray-walled cavity. For this condition, ca may be read directly from

figure 1. If _ _ e_ the ordinates are to be multiplied by c/_.

Inspection of figure i suggests that the spherical cavity is an

attractive configuration for potential application as a source of nearly

black-body radiation.

I
E-

bl

The foregoing analysis demonstrated a unique property of the diffuse

spherical cavit_ namely, that the absorption and emission characteristics

can be represented in terms of simple, closed-form algebraic equations.

In general, for nonspherieal configurations, solving integral equations

would be necessary to obtain corresponding information. In almost all

instances_ numerical techniques would have to be employed in conjunction

with a digital computer.
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Because of its simplicity, the local absorption relation (eq. (ii))

is in an especially convenient form to serve as input data for analyses

involving reemission and perhaps energy storage. Considerations re-

lating to energy storage arise in systems that may not be irradiated

continuously and that employ fluids or salt solutions as heat reservoirs.

Although such analyses may involve transient conditions, the applicabil-

ity of equation (ll) is not altered.

One situation occurs in which the simultaneous problem of incoming

external radiation and surface emission can be solved by a simple linear

combination of the results for the separate absorption and emission prob-

lems. This is the case of the isothermal surface. The net overall heat

loss is given by the difference Q' - Q (Q' is overall rate of energy

streaming from cavity and Q is overall rate of energy absorption),

while the net local heat loss is found from qr _ q (q, is net local

rate of heat loss per unit area and q is local rate of energy absorp-

tion per unit area).

Heat Transfer Laboratory

Department of Mechanical Engineering

University of Minnesota

Minneapolis, Minn.

February 28, 1962
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